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Abstract: Evaluating the performance of watershed models is essential for a reliable assessment of
water resources, particularly in Pacific island watersheds, where modeling efforts are challenging
due to their unique features. Such watersheds are characterized by low water residence time, highly
permeable volcanic rock outcrops, high topographic and rainfall spatial variability, and lack of
hydrological data. The Soil and Water Assessment Tool (SWAT) model was used for hydrological
modeling of the Nuuanu area watershed (NAW) and Heeia watershed on the Island of Oahu (Hawaii).
The NAW, which had well-distributed rainfall gauging stations within the watershed, was used for
comparison with the Heeia watershed that lacked recoded rainfall data within the watershed. For the
latter watershed, daily rain gauge data from the neighboring watersheds and spatially interpolated
250 m resolution rainfall data were used. The objectives were to critically evaluate the performance of
SWAT under rain gauge data scarce conditions for small-scale watersheds that experience high rainfall
spatial variability over short distances and to determine if spatially interpolated gridded rainfall
data can be used as a remedy in such conditions. The model performance was evaluated by using
the Nash–Sutcliffe efficiency (NSE), the percent bias (PBIAS), and the coefficient of determination
(R2), including model prediction uncertainty at 95% confidence interval (95PCI). Overall, the daily
observed streamflow hydrographs were well-represented by SWAT when well-distributed rain gauge
data were used for NAW, yielding NSE and R2 values of > 0.5 and bracketing > 70% of observed
streamflows at 95PCI. However, the model showed an overall low performance (NSE and R2 ≤·0.5) for
the Heeia watershed compared to the NAW’s results. Although the model showed low performance
for Heeia, the gridded rainfall data generally outperformed the rain gauge data that were used
from outside of the watershed. Thus, it was concluded that finer resolution gridded rainfall data
can be used as a surrogate for watersheds that lack recorded rainfall data in small-scale Pacific
island watersheds.
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1. Introduction

Spatially distributed watershed models are needed for a reliable assessment of the elements of
watershed’s water budget under current and future climate and land use conditions. In addition,
such models are needed to assess the impacts of various watershed management practices and
scenarios on water budgets and sediment and nutrient loads [1–4]. Thus, watershed models are helpful
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tools for decision makers to better understand the spatial and temporal variability of watershed
processes, to assess environmental problems, and to design effective mitigation measures [5–7].
The use of spatially distributed watershed models has gained increased attention due to advances in
techniques to use the readily available Geographic Information System (GIS) data for accounting for
the watershed’s spatial heterogeneity. Furthermore, the availability of computers with continually
increasing power plays significant role in the use of computationally demanding distributed watershed
models [8]. Such models are thus expected to improve the representation of various watershed
processes when compared to lumped models, by accounting for heterogeneity of the watershed’s
properties and hydro-climate forcing [9]. However, watershed models can suffer from substantial
uncertainties, especially from those caused by scarcity of rainfall data that can potentially vary across
a watershed [10–12]. As rainfall is the main input factor in hydrological modeling, model accuracy is
expected to be adversely affected in regions where sparse rain gauge networks are prevalent [13–16].
Such an issue is critically important for the Hawaiian watersheds where rainfall spatial variability
is highly persistent [17,18]. As reported by Giambelluca et al. [17], the spatially interpolated annual
average rainfall by using ordinary kriging technique ranges 200–10,000 mm per year over the Hawaiian
Islands, indicating a dramatic rainfall spatial variability over short distances. However, the quality
of the record of these estimates is expected to decrease with the overall island-wide decrease in
the number of rainfall gauging stations [18]. As a result, rainfall spatial variability may have to be
represented at a certain watershed by using data from rain gauges in the neighboring watersheds.
As a remedy, gridded rainfall data with various spatial scales can be used from various sources.
Sources include the Climate Forecasting System Reanalysis (CFSR) data with approximately 0.3◦

spatial resolution [19], Water and Global Change (WATCH) data of 0.5◦ spatial resolution [20], Tropical
Rainfall Measuring Mission (TRMM) data of 0.25◦ spatial scale [21], Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSIANN) data of 0.08–0.25◦ spatial
resolutions [22,23], Climate Prediction Center (CPC) morphing (CMORPH) data of 0.25◦ spatial
resolution [24,25], and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data
of 0.05◦ spatial resolution [26]. Several studies have used such data for hydrological modeling of
large-scale continental watersheds [27–29]. These previous studies generally show the applicability
of satellite rainfall products as a remedy for data scarce regions [23,27,29]. However, the suitability
of such coarse resolution rainfall data has not been addressed yet for small-scale watersheds that
experience significant rainfall spatial gradient over short distances such as in Hawaii.

Various spatially distributed watershed models have been used to assess different watershed
processes (e.g., hydrology, sediment, and nutrient fluxes) and the impact of several watershed
management practices on these processes. These models include the Soil and Water Assessment
Tool (SWAT) model [30], which is a semi-distributed model and has been widely used [7,13,31–37].
In the U.S., SWAT has been used by the Conservation Effect Assessment Project (CEAP) of the
U.S. Department of Agriculture (USDA) [8]. The model has also been integrated into the U.S.
Environmental Protection Agency’s (EPA) Better Assessment Science Integrating Point and Nonpoint
Sources (BASINS) tool in the development of Total Maximum Daily Load for environmental water
pollution assessment [38]. In addition to the continental U.S. watersheds, the model has been
used in Hawaii [14,39]. SWAT has also been applied in projects in Africa, Asia, Europe, and other
continents [40,41]. The previous studies confirm the applicability of SWAT across a broad range of
watershed scales and environmental conditions, including application to less than a square kilometer
watershed scale [40] to continent scales [42,43]. However, models such as SWAT have many parameters
that cannot be directly measured in the field, but should be obtained through model parameter
estimation and accuracy assessment procedures [44,45].

While there are different sources of uncertainty that contribute to watershed modeling, several
studies have shown that model parameter estimation and hydrological models’ accuracy are highly
dependent on the accuracy of rainfall data [10,13,46–48]. To date, the effect of scarcity of rainfall
data on model parameter estimation and performance has been widely studied for large scale and
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continental watersheds [27–29,34]. However, the implications of rainfall data scarcity on watershed
model parameter estimation and performance have not been broadly addressed for small scale,
yet spatially heterogeneous, Pacific island watersheds. Hawaii is used for the illustration of these
effects as a perfect setting due to decreasing rainfall monitoring efforts despite large rainfall spatial
variability. Combined with high topographic gradients and unique volcanic rock outcrops, rainfall is
very critical in developing spatially-distributed watershed models. In this study, both rain gauge and
high-resolution gridded rainfall data from difference sources are used in the analyses. The gridded
rainfall include data from TRMM [21], CHRIPS [26], and spatially interpolated 250 m resolution
over the Hawaiian Islands [49]. Interpolation from available rain gauges data of Hawaii to 250 m
gridded data has been achieved by using the modified Inverse Distance Weighting (IDW) method [49].
Before gridded rainfall data are used as inputs to the SWAT model, comparison and evaluation of
their accuracy with the recorded rainfall values (ground truth data) are performed at several stations
within a watershed. Specifically, the Nuuanu area watershed (NAW), which is characterized by
well-distributed rain gauging stations within the watershed, is used as a benchmark. The NAW that
covers approximately 100 km2 had 20 rain gauges, which roughly represents one station per 5 km2 of
the watershed. It is expected that gauged watersheds, such as NAW, should provide higher modeling
accuracy. Thus, it is of interest to test performance of the selected gridded rainfall data against the
well-distributed rain gauge data in simulating daily streamflow of the NAW.

The second case study concerns the Heeia watershed, which completely lacks measured rainfall
data in the watershed. Consequently, gridded rainfall data that are identified based on a correlation
analysis with rain gauge data of the NAW are used for the Heeia watershed. In addition, rainfall
values derived from the surrounding watersheds’ rain gauges data are also used for Heeia. The main
goal of the study is thus to critically evaluate the performance of SWAT under the utilization of nearby
rain gauges and gridded rainfall data. Application is specifically completed for an ungauged Pacific
island watershed that is characterized by special hydrologic conditions. The specific objective was to
critically assess and compare the performance of SWAT model in simulating daily streamflow under
the use of rain gauges and gridded rainfall data.

Although the research was mainly concerned with the Heeia watershed, the application of the
procedures for the well-gauged NAW was intended to select the best approach to be utilized for
the ungauged Heeia watershed. In addition, it was of interest to assess the relative accuracy of
utilizing gridded data for the NAW watershed, which is drastically different from the Heeia watershed.
The results are expected to benefit future research efforts that are subject to scarcity of rainfall data.
Findings may also help in identifying rainfall data requirements for successful modeling efforts in
Pacific and other similar islands.

2. Materials and Methods

2.1. SWAT Model

SWAT is a physically-based, semi-distributed model that operates at daily or sub-daily time step
for watersheds of various sizes [40,50]. The model addresses watershed’s spatial heterogeneity and
connectivity by dividing the watershed into several sub-basins. As such, geospatial data such as Digital
Elevation Model (DEM), land use, and soil maps are required to develop the model. Sub-basins are
the first spatial division of SWAT, which are generated from a DEM data. The accuracy of delineated
sub-basins and stream networks by SWAT is highly dependent on DEM resolution [51–54]. Ideally, finer
DEM resolution would provide a larger elevation range, accurate sub-basin and streamflow network
representation, smaller sub-basin areas, and realistic model parameterization. Such characteristics
would in turn produce accurate model outputs and improve model performance especially for
small-scale and spatially heterogeneous watersheds [51–53]. Unlike the DEM spatial resolution,
the sensitivity of SWAT to land use/land cover (LULC) resolution and classification accuracy has not
been significantly observed [55,56]. However, some researchers reported that the use of finer-resolution
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LULC for the model would reduce bias on streamflow simulation and thus improve the model
accuracy [55,57]. Similar conclusions have been documented regarding the spatial resolution effect of
soil data on SWAT outputs [56–59]. For example, Geza and McCray [58] used the coarser-resolution
State Soil Geographic (STATSGO) and the finer-resolution Soil Survey Geographic (SSURGO) databases
for the small-scale Turkey Creek watershed in Colorado. The authors found an overall similar model
performance in simulating streamflow (after calibration) for both soil databases, but the SSURGO soil
data provided slightly better results compared to the STATSGO soil data. Overall, although SWAT
showed high sensitivity to DEM resolutions, the use of finer-resolution geospatial data is generally
expected to provide better model outputs and therefore, improve model accuracy, particularly for
small-scale watersheds [55–57].

SWAT required climatic data include daily rainfall and maximum and minimum temperatures
while relative humidity, wind speed, and solar radiation are optional ones. Climatic data are provided
at sub-basin level, which can be read-in from different gauging stations or generated by the model itself
using its weather generator tool, if measured data are not available. The model assigns one gauging
station per sub-basin. Thus, each sub-basin has homogeneous climatic condition [60], but differ
in terms of land use, soil, and topographic features. SWAT automatically converts the land use
and soil data resolutions to the DEM resolution during watershed delineation and geospatial data
overlying processes. To account for the variability of geospatial characteristics and hydrologic
processes, sub-basins are further sub-divided into several hydrological response units (HRUs),
with each characterized by a unique combination of land use, soil type, and slope value within
a sub-basin [61]. To facilitate the integration of geospatial and hydro-climate data, the model is
interfaced with ArcGIS [62].

SWAT simulates hydrologic processes at land and routing phases. At the land phase, the model
uses soil water balance approach and equations to independently estimate the water balance elements,
such as precipitation, surface runoff, actual evapotranspiration, lateral flow, percolation, groundwater,
and deep groundwater loss at the HRUs scale [63]. During the routing phase, the computed surface
runoff, lateral flow, and groundwater flow components from different HRUs are summed up per
sub-basin and routed to the main river reach. Detailed approaches for simulating the aforementioned
processes are provided by Neitsch et al. [63]. This study particularly used the Curve Number method of
the modified Soil Conservation Service (SCS) [64] for surface runoff simulation, the Penman–Monteith
method [65] for daily Potential Evapotranspiration (PET) estimation, and the variable storage routing
method [66] for daily streamflow routing.

2.2. Study Area Description

This research was carried out on two watersheds located on the Island of Oahu: the Heeia
watershed and the Nuuanu area watershed (NAW). Figure 1 shows the location of the two watersheds,
which had contrasting rainfall data.

2.2.1. Heeia Watershed

The Heeia watershed, which has U.S. Geological Survey (USGS) hydrologic unit code (HUC)
of 20,060,000, covers an area of 11.5 km2 and is located in the northeast, windward part of Oahu,
Hawaii (Figure 1a). Elevation in the watershed ranges from 0 to 850 m (Figure 2a) above mean sea
level (AMSL) with an average slope of 40%.

Evergreen forest covers the upstream part of Heeia watershed (Figure 2b) with 46% of coverage,
while its downstream impervious surface accounts for 18% of the area. The silty clay soils cover 76%
of the watershed. The rock outcrop, rock land, and rough mountainous land mainly occur at the crest
part of the watershed (Figure 2c) and constitute 19% of the watershed. The other soils (marsh, clay,
silty clay loam, and clay loam) only cover 5% of the watershed.
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Figure 1. (a) the Hawaiian Islands; (b) location of the study areas on Oahu Island (solid black lines 
show watersheds boundaries and blue lines indicate stream networks; and (c) the geological 
formations of Heeia (top) and Nuuanu area watershed (bottom). 

The surficial geological formations of Heeia are dominated by Koolau basalt that covers 46% of 
the watershed (Figure 1c), followed by Older Alluvium (37%) and Alluvium (13%) [67]. The Koolau 
basalt largely covers the mountainous region (Figure 1c) and is characterized by a very high hydraulic 
conductivity of up to 1500 m day−1 [68]. With such characteristic, the Koolau basalt formation may 
have considerable effect on the hydrological processes of the watershed, and thus expected to 
produce high groundwater recharge and less surface runoff [68]. 

 
Figure 2. Heeia and Nuuanu area watersheds: (a) digital elevation model with hydro-meteorological 
stations and annual rainfall isohyet (in mm); (b) land use; and (c) soil type. 
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The surficial geological formations of Heeia are dominated by Koolau basalt that covers 46% of
the watershed (Figure 1c), followed by Older Alluvium (37%) and Alluvium (13%) [67]. The Koolau
basalt largely covers the mountainous region (Figure 1c) and is characterized by a very high hydraulic
conductivity of up to 1500 m day−1 [68]. With such characteristic, the Koolau basalt formation may
have considerable effect on the hydrological processes of the watershed, and thus expected to produce
high groundwater recharge and less surface runoff [68].
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2.2.2. Nuuanu Area Watershed (NAW)

The NAW is situated in the southeastern, leeward part of Oahu (Figure 1b), with the major
sub-watersheds Kalihi, Nuuanu, Makiki, and Manoa-Palolo (Figure 1c). NAW shares the same HUC
with the Heeia watershed, even though the two watersheds are not draining into the same outlet.
This is due to small-scale nature (< 1600 km2) and topographic settings of the island that may not
qualify for the standard classification of HUC. Thus, one HUC has been provided for all watersheds of
Oahu. The sub-watersheds of NAW approximately cover 100 km2. The elevation of the NAW ranges
from 0 to 959 m AMSL (Figure 2a), with an average slope of 33%. The upstream part of the NAW is
dominated by evergreen forest that covers 47% of the area (Figure 2b). The lowland part of the NAW
is more urbanized covering 38% of the area (Figure 2b).

Unlike the Heeia watershed’s soils, the soils of NAW are more diversified with 32 different soil
types that were classified based on location names and properties. To simplify the display, the original
soil data were grouped into the major soil categories (Figure 2c). However, the SWAT model utilized
the originally obtained soil data (>30 categories). The actual soil parameters and values used in SWAT
model can be found in SSURGO database of the USDA, Natural Resources Conservation Service
(NRCS) (http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=HI).
Similar to Heeia, the silty clay soil of NAW accounts for the largest coverage (21%) followed by
rough mountainous land (15%) that mainly prevails in the mountainous region and silty clay loam
(12%) (Figure 2c). The surficial geological formations of NAW are dominated by Koolau basalt (37%),
followed by Honolulu Volcanics (24%) and Alluvium (13%) (Figure 1c).

The Kalihi sub-watershed (Figure 2a), which is part of the NAW, is similar in size (16.1 km2) and
watershed properties to the Heeia watershed. For fair comparison, the results of Kalihi sub-watershed
were thus used to evaluate and compare with the results of Heeia watershed.

2.3. Data

2.3.1. Heeia Watershed

Geospatial data, such as a 10 m × 10 m DEM obtained from the Department of Commerce (DOC),
National Oceanic and Atmospheric Administration (NOAA), Center for Coastal Monitoring and
Assessment (CCMA), 1:24,000 scale soil maps from SSURGO database provided by the USDA-NRCS
(http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=HI), and a
2.4 m × 2.4 m land use map from the NOAA Coast Change Analysis Program (C-CAP) (https:
//coast.noaa.gov/ccapatlas/).

Majority of gauged climate data (rainfall, temperature, wind speed, relative humidity, and solar
radiation) were obtained from the surrounding watersheds. However, recent climate data were
collected by this study within the watershed for two years (2012–2013) to support this research. For the
latter, a WatchDog 2000 Series weather station (https://www.specmeters.com/weather-monitoring/
weather-stations/2000-full-stations/) was deployed inside a wetland located at the coastal plain of
Heeia (Figure 1c), and is hereafter referred as Heeia station.

Two rainfall datasets, rain gauge (point measurements) and gridded values, were considered in
this study. Continuous, long-term daily rain gauge data were obtained for the period of 2000 to 2013
from the Hawaii Institute of Marine Biology (HIMB) at Coconut Island (Kuulei Rodgers, personal
communication, 2014). Rainfall data were also available from the USGS stations at the North Halawa
Valley, Halawa Tunnel and at Moanalua rain gauge number 1 (http://waterdata.usgs.gov/nwis/sw),
and from the National Climatic and Data Center (NCDC) of NOAA at Kaneohe station (http://www.
ncdc.noaa.gov/cdo-web/datasets) (Table 1 and Figure 2a). Three medium to high-spatial resolution
gridded daily rainfall datasets were obtained: rainfall data of the TRMM 3B42 V7 with a spatial
resolution of 0.25 degree (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) [21],
the CHRIPS with a spatial resolution of 0.05 degree (http://chg.geog.ucsb.edu/data/chirps/index.ht
ml) [26], and the spatially interpolated with a spatial resolution of 250 m for the Hawaiian Islands [49].

http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=HI
http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=HI
https://coast.noaa.gov/ccapatlas/
https://coast.noaa.gov/ccapatlas/
https://www.specmeters.com/weather-monitoring/weather-stations/2000-full-stations/
https://www.specmeters.com/weather-monitoring/weather-stations/2000-full-stations/
http://waterdata.usgs.gov/nwis/sw
http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
http://chg.geog.ucsb.edu/data/chirps/index.html
http://chg.geog.ucsb.edu/data/chirps/index.html
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The 250 m resolution rainfall data were obtained from the Department of Geography at the University
of Hawaii at Manoa (R. Longman, 2018, personal communication) and hereafter called “UH250m”.
The gridded rainfall data were available from 1981 to present for the CHIRPS, 1998 to present for the
TRMM, and 1990 to 2014 for the UH250m.

Daily maximum and minimum temperatures and wind speed were obtained from the HIMB
and Kaneohe stations for the period 2000–2013. Daily spatially interpolated maximum and minimum
temperature data were also available from the UH250m for the period 1990–2014. The HIMB station
also had daily solar radiation data. The geographically closest available records of daily relative
humidity data were collected by the Western Region Climate Center (WRCC) (http://www.raws
.dri.edu/wraws/hiF.html) at Oahu Schofield East and Oahu Forest National Weather Research
(NWR) (Table 1), which are approximately located at 18 and 11 km, respectively, from the watershed.
As long-term measured climate data were only available from the surrounding watersheds, data
compilation was also facilitated by completing a correlation analysis among the recently collected
data (temperature, wind speed, solar radiation, and relative humidity) at the Heeia station for the
overlapping period 2012–2013 against those stations located in the surrounding watersheds. Then,
those stations that had a correlation coefficient of ≥ 0.7 were used to fill the missing data. Available
sources of climate data are summarized in Table 1.

The only available continuous, long-term daily streamflow data for the watershed were at the
USGS gauging number 16275000 at Haiku (http://waterdata.usgs.gov/hi/nwis/), which measures
flow from about 2.5 km2 drainage area. However, short-term streamflow data were recorded by this
study by using a Pygmy flow meter in the period from May to December 2013 just at the entry to
the Heeia coastal wetland, which drains approximately 6.3 km2 area (Figure 1c). Since continuous
long-term streamflow data, which are needed for model parameter estimation, were not available at
the coastal plain, its total daily streamflow values were estimated based on the measured streamflow
data of 2013 and the continuous USGS data at 16275000 station (Figure 2a). The study by Leta et al. [14]
describes the detailed approach for estimating daily streamflow values of the coastal wetland, which is
hereafter called “wetland station”.

http://www.raws.dri.edu/wraws/hiF.html
http://www.raws.dri.edu/wraws/hiF.html
http://waterdata.usgs.gov/hi/nwis/
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Table 1. Meteorological stations of SWAT for Heeia and Nuuanu area watersheds.

Climate Type Description Station ID Resolution Elevation (m) Lat. Long. Available Period Source

Rainfall

BERETANIA PUMP STATION 7 HI US GHCND:USC00510211 Daily 6.1 21.317 −157.850 1/1/1980 to present NOAA-NCDC a

HONOLULU INTERNATIONAL AIRPORT HI US GHCND:USW00022521 Daily 2.1 21.333 −157.917 1/1/1980 to present NOAA-NCDC

HONOLULU 2.2 NW HI US GHCND:US1HIHN0009 Daily 126.5 21.336 −157.833 18/6/2011 to 1/7/2013 NOAA-NCDC

HONOLULU 2.7 SSE HI US GHCND:US1HIHN0010 Daily 112.5 21.285 −157.782 27/6/2011 to present NOAA-NCDC

HONOLULU 3.9 WNW HI US GHCND:US1HIHN0013 Daily 105.8 21.337 −157.861 6/12/2012 to 12/18/2014 NOAA-NCDC

KALIHI RES SITE 777 HI US GHCND:USC00512960 Daily 278.0 21.383 −157.833 1/1/1980 to present NOAA-NCDC

KAPALAMA 773 HI US GHCND:USC00513268 Daily 185.9 21.350 −157.867 1/1/1980 to present NOAA-NCDC

MANOA 712.1 HI US GHCND:USC00516122 Daily 6.1 21.350 −157.900 1/1/1980 to present NOAA-NCDC

MANOA LYON ARBO 785.2 HI US GHCND:USC00516128 Daily 153.0 21.333 −157.800 1/1/1980 to present NOAA-NCDC

MANOA TUN 2 716 HI US GHCND:USC00516130 Daily 198.1 21.333 −157.800 1/1/1980 to 7/31/2006 NOAA-NCDC

MOANALUA 770 HI US GHCND:USC00516395 Daily 6.1 21.350 −157.900 1/1/1980 to present NOAA-NCDC

NUUANU RES 4 783 HI US GHCND:USC00516928 Daily 320.0 21.350 −157.817 1/1/1980 to present NOAA-NCDC

NUUANU RES 5 775 HI US GHCND:USC00516933 Daily 125.0 21.350 −157.833 1/1/1980 to present NOAA-NCDC

PALOLO VALLEY 718 HI US GHCND:USC00517664 Daily 305.1 21.333 −157.767 1/1/1980 to present NOAA-NCDC

PAUOA FLATS 784 HI US GHCND:USC00517810 Daily 499.9 21.350 −157.800 1/1/1980 to present NOAA-NCDC

PUNCHBOWL CRATER 709 HI US GHCND:USC00518316 Daily 110.0 21.317 −157.850 1/1/1980 to present NOAA-NCDC

TANTALUS 2 780.5 HI US GHCND:USC00518738 Daily 402.9 21.333 −157.833 1/1/1980 to present NOAA-NCDC

UNIVERSITY OF HAWAII 713 HI US GHCND:USC00518815 Daily 24.1 21.300 −157.817 1/1/1980 to present NOAA-NCDC

WILHELMINA RISE 721 HI US GHCND:USC00519980 Daily 335.9 21.300 −157.783 1/1/1980 to present NOAA-NCDC

KANEOHE 838.1 HI US GHCND:USC00513117 Daily 5.6 21.417 −157.800 1/4/1985 to present NOAA-NCDC

Hawaii Institute of Marine Biology (HIMB) NA Daily 1.0 21.433 −157.787 1/9/1992 to present HIMB

772.3 Moanalua RG No. 1 at alt 1000 ft, Oahu, HI 212359157502601 Daily 304.8 21.393 −157.840 1/1/1978 to present USGS b

771.11 N. Halawa Valley RG at tunnel, Oahu, HI 212428157511201 Daily 335.3 21.405 −157.850 16/7/1998 to present USGS

Temperature

HONOLULU INTERNATIONAL AIRPORT HI US GHCND:USW00022521 Daily 2.1 21.333 −157.917 1/1/1980 to present NOAA-NCDC

MANOA LYON ARBO 785.2 HI US GHCND:USC00516128 Daily 153.0 21.333 −157.800 1/1/1980 to present NOAA-NCDC

KANEOHE 838.1 HI US GHCND:USC00513117 Daily 18.3 21.417 −157.800 1/4/1985 to present NOAA-NCDC

Hawaii Institute of Marine Biology (HIMB) NA Daily 5.6 21.433 −157.787 1/9/1992 to present HIMB
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Table 1. Cont.

Climate Type Description Station ID Resolution Elevation (m) Lat. Long. Available Period Source

Wind speed
HONOLULU INTERNATIONAL AIRPORT HI US GHCND:USW00022521 Daily 2.1 21.333 −157.917 1/1/1980 to present NOAA-NCDC

KANEOHE 838.1 HI US GHCND:USC00513117 Daily 5.6 21.417 −157.800 1/4/1985 to present NOAA-NCDC

Hawaii Institute of Marine Biology (HIMB) NA Daily 1.0 21.433 −157.787 1/9/1992 to present HIMB

Relative humidity
HONOLULU INTERNATIONAL AIRPORT 911820/22521 Hourly 2.1 21.324 −157.929 1/1/1980 to present NOAA-ISD c

Schofield East Hawaii 325AB384 Daily 381.0 21.499 −157.993 18/5/2000 to present WRCC d

Oahu Forest National Weather Research 8379F6FA Daily 698.9 21.499 −157.9 25/8/2006 to present WRCC

Solar radiation
DILLINGHAM HAWAII 3278D278 Daily 30.6 21.572 −158.199 1/4/2004 to present WRCC

Hawaii Institute of Marine Biology (HIMB) NA Daily 1.0 21.433 −157.787 1/9/1992 to present HIMB
a National Oceanic and Atmospheric Administration (NOAA)—National Climatic Data Center; b U.S. Geological Survey; c NOAA Integrated Surface Database; d Western Regional
Climate Center.
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2.3.2. NAW

The same geospatial and gridded rainfall data sources as for the Heeia watershed were also
used for NAW. The measured daily climate data of NAW, such as rainfall, minimum and maximum
temperature, relative humidity, wind speed, and solar radiation, were collected from various sources
for the period 1980–2014 (Table 1). Unlike Heeia watershed, several rain gauging stations were
available within the watershed from the NCDC (Figure 2a) that are summarized in Table 1. However,
the other data (temperature, relative humidity, wind speed, and solar radiation) were only available in
the surrounding watersheds from the NCDC and the WRCC. Finally, for optimal model parameter
estimation, daily streamflow data recorded at multiple gauging stations of the USGS were used
(Figure 2a).

2.4. SWAT Set-Up, Sensitivity Analysis, Calibration, and Validation

2.4.1. Heeia Watershed Set-Up

Using the ArcGIS interface version of SWAT (ArcSWAT 2012) and DEM data (Figure 2a), the Heeia
watershed up to its main outlet was divided into 22 sub-basins that were further sub-divided into
1330 HRUs. During HRU classification, zero threshold values for land use, soil type, and slope value
were used, to maintain an accurate spatial variability as much as possible. In this case, existing land use,
soil type, and slope characteristics of the watershed are preserved. In addition, the approach facilitates
a better assessment of land use change and management practices effect on water budgets. Due to the
high topographic variability of the watershed, the number of sub-basins was also increased compared
to the SWAT default values. Moreover, this study used five slope classes, which are the maximum
number in SWAT. The watershed’s slope classes were defined as 0–10%, 10–25%, 25–40%, 40–70%
and >70%. The slope class values were based on previous slope classification of the watershed [69].
The model was built for the period of 2000–2013.

2.4.2. NAW Set-Up

The DEM data of NAW (Figure 2a) were used to delineate the watershed into 79 sub-basins with
5200 HRUs. The same approaches of Heeia watershed were followed for slope and HRU classification
of the NAW. The model set-up covered the period of 1980–2014.

2.4.3. Rainfall Input Data

As a first step, and before applying SWAT, gridded rainfall data obtained from the three different
sources were analyzed for accuracy against rain gauge data at multiple locations. Such analysis
was based on the correlation coefficient values among the different datasets, including their order
of magnitude. The analysis was only performed for the NAW taking the advantage of the good
quality and well-distributed rain gauges within the watershed. As it should be expected, weak
correlation coefficient values (r < 0.3) were obtained between the CHIRPS or TRMM data and the rain
gauge values, stressing the inability of satellite products and algorithms to capture the natural spatial
complexity, variability, and pattern of rainfall formation in Pacific islands. This is most likely due
to their coarse resolutions of satellite products and thus smoothing of the occurrence of the rainfall
spatial heterogeneity over short distances. However, it should be noted that the correlation coefficients
significantly increased (r ≤ 0.75) for monthly time-scales. On the other hand, the UH250m daily rainfall
data with the rain gauge values provided strong correlation coefficient values of 0.53–0.91. In addition,
more than 60% of the 20 rain gauges used showed correlation values of ≥ 0.8. This should be expected
since the UH250m data utilized the nearest five observations (rain gauges) in the spatial interpolation
of IDW method [49,70], which likely influenced the interpolated values. The data compilation and
adoption of the traditional IWD interpolation technique to capture Hawaii’s complex terrain effects on
rainfall pattern are detailed in Longman et al. [70] and Longman et al. [49], respectively. As the study
aimed to evaluate the SWAT model at daily time-scale, neither the TRMM nor the CHIRPS dataset was
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considered as rainfall input for the model. Therefore, the results presented hereafter are based on the
rain gauge and the UH250m daily rainfall data.

SWAT utilizes the previously discussed climatic data from different gauging stations. However,
the model selects only one station per sub-basin, based on the closest station to the centroid of
the sub-basin. Therefore, the daily gridded rainfall data cannot be directly used by the model.
To address this issue, daily average rainfall values per sub-basin were estimated by overlaying SWAT
delineated sub-basins with daily rainfall raster maps and using the zonal mean statistics tool of ArcGIS.
The estimated daily time series values were then assigned to virtual stations that were created by
considering the centroid of each sub-basins.

For the Heeia watershed, both the UH250m rainfall data and rain gauge data from outside the
watershed were used. In addition, due to lack of recorded rainfall data inside the watershed, additional
calculations were made based on rainfall data recorded at four rain gauges of adjacent watersheds that
are approximately located within 2–4 km from the centroid of the watershed (Figure 2a). The values
were also spatially rescaled based on monthly average scaling factors estimated from the monthly
average rainfall maps of Oahu [18]. Derived rainfall isohyets (see, e.g., Figure 2a) were used to estimate
a monthly average scaling factor for each rain gauge. Then, those factors were linearly applied to
rescale the observed rainfall values from the four rain gauging stations at certain virtual stations that
were created in the watershed at the centroid of each sub-basins (Figure 2a).

For the NAW, all the available rain gauging stations within and the surrounding watersheds
were used (Figure 2a). If missing rainfall value was detected for a given rain gauge, rainfall spatial
variability was considered based on the monthly isohyet maps (see, e.g., Figure 2a) that were derived
from the monthly rainfall maps of Oahu [18]. Then, missing rainfall values were filled based on
the nearest stations by using linear interpolation techniques. Similarly, the monthly maximum and
minimum temperature, solar radiation, and relative humidity maps of Oahu [71] were used to fill the
corresponding data gaps. In addition to rain gauge data, the UH250m rainfall data were also used for
SWAT model performance comparison purpose.

2.4.4. Sensitivity Analysis, Calibration, and Validation

In this study, the Sequential Uncertainty Fitting (SUFI2) algorithm of the SWAT Calibration and
Uncertainty Program (SWAT-CUP) [15] was used for an automatic calibration procedure. The SWAT
simulation period was divided into a warming-up period of two years to initialize the state variables
of the system (e.g., soil moisture), a calibration period, and a validation period. Depending on the
availability of daily observed streamflow data, the calibration and validation periods generally cover
1985–2014 at multiple streamflow gauging stations.

To facilitate the calibration process, first, the sensitive parameters were identified by using the
global Latin Hypercube-One-factor-At-a-Time (LH-OAT) sensitivity analysis (SA) technique [72] of
SWAT-CUP. For SA, the minimum and maximum values of the SWAT parameters were set based on
the ranges given in SWAT and SWAT-CUP guidelines [15,61] as well as incorporating our experience
of the sites [14,39]. It should be noted that the purpose of SA was only to identify the sensitive
parameters from about 26 flow related parameters of SWAT for the subsequent calibration and
validation processes. For some parameters that show spatially different values (heterogeneity) based
on land use, soil type, and slope value, relative global multipliers to the original parameter values
were applied. These parameters include the SCS Curve Number at antecedent soil moisture condition
II (CN2), available soil water holding capacity (SOL_AWC), saturated soil hydraulic conductivity
(SOL_K), and maximum canopy storage (CANMX). SA was run for 500 simulations. SWAT was
automatically calibrated for those parameters that showed high sensitivity. The slightly modified
SWAT by Leta et al. [14] that considered high initial rainfall abstraction for the Hawaiian volcanic soils
was used. While some researchers argued to reduce the most widely used initial abstraction coefficient
(λ) value of 0.2 in Curve Number method for continental watersheds [73–75], Leta et al. [14] proposed
to increase the value for the unique volcanic soils and climatic conditions of the Hawaiian watersheds.
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Considering the high soil permeability and thus initial infiltration rate of volcanic soils [68], the authors
doubled the λ value from 0.2 to 0.4 and obtained better streamflow results, including improvement on
model performance. Hence, this study also utilized the modified SWAT model of Leta et al. [14].

2.5. SWAT Performance Evaluation

SWAT performance on streamflow simulations was assessed by using three statistical evaluation
metrics as recommended by several researchers [76–78]. The metrics include the Nash–Sutcliffe
efficiency (NSE) [79], the percent bias (PBIAS) [76], and the coefficient of determination (R2) [78].
These metrics are calculated as follows:

NSE =
∑N

i=1
(
Qs,i − Qo,i

)2

∑N
i=1
(
Qo,i − Qo

)2 (1)

PBIAS =
∑N

i=1
(
Qs,i − Qo,i

)
∑N

i=1 Qo,i
× 100 (2)

R2 =

 ∑N
i=1
(
Qo,i − Qo

)(
Qs,i − Qs

)√
∑N

i=1
(
Qo,i − Qo

)√
∑N

i=1
(
Qs,i − Qs

)
2

(3)

In these equations, Qs,i and Qo,i are simulated and observed streamflows at time step i (m3/s),
respectively, whereas Qs and Qo are the corresponding mean of simulated and observed streamflows
over the entire period (m3/s), and N is the total number of streamflow data points.

Due to equifinality (non-uniqueness) issues on model parameter estimation and prediction
uncertainty, SWAT performance was further evaluated by using the percent of observations bracketed
(p-factor) and the average width of uncertainty band to observation standard deviation ratio (r-factor)
at 95% confidence interval (95PCI) [15]. The 95PCI essentially considers the total model prediction
uncertainty [80]. Yang et al. [80] stated that a good calibration and predictive uncertainty is achieved
when p-factor is close to 1 and the r-factor is close to 0. However, due to input data measurement
errors and other sources of uncertainties, such as model structure, parameter values, and calibration
data, the desired p-factor and r-factor values may not always be achieved and, thus, need to be
compromised [15]. Consequently, Abbaspour et al. [43] suggested a p-factor ≥ 0.7 and r-factor ≤ 1.5 as
acceptable values. Based on these two additional criteria, the results were considered as acceptable or
not. In this study, SUFI2 was run for 500 simulations, but the 95PCI uncertainty was assessed for those
simulations that provided a behavioral solution (threshold value) of NSE ≥ 0.5 or 0.2. Due to lack of
measured rainfall data, and thus a lower performance of SWAT, the threshold value was lowered to
0.2 for the Heeia watershed.

Finally, to assess the overall performance of SWAT for daily streamflow simulations, a qualitative
general performance rating was formulated by using NSE, PBIAS, and R2 values. For these indices,
Moriasi et al. [78] provided four qualitative performance evaluation criteria and the respective
threshold values for streamflow simulations (Table 2). However, due to variation in calculated metrics’
values and quality ratings of the three indicators summarized in Table 2, an overall (normalized)
performance rating was used. This was done by calculating individual indicator values and comparing
the values with the corresponding threshold values in Table 2. Then, a performance weight of 4 for very
good, 3 for good, 2 for satisfactory, and 1 for unsatisfactory was assigned (Table 2). Lastly, an average
(normalized) value of these ratings was used to determine an overall performance rating of SWAT.
Similar approach was also used by other researchers [6,45,81].
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Table 2. The performance evaluation criteria (PEC), statistical threshold values, and corresponding
assigned weight.

PEC PBIAS R2 NSE Assigned Weight

Very good PBIAS < ± 5 R2 > 0.85 NSE > 0.80 4
Good ±5 ≤ PBIAS < ± 10 0.75 < R2 ≤ 0.85 0.70 < NSE ≤ 0.80 3

Satisfactory ±10 ≤ PBIAS < ± 15 0.60 < R2 ≤ 0.75 0.50 < NSE ≤ 0.70 2
Unsatisfactory PBIAS ≥ ±15 R2 ≤ 0.60 NSE ≤ 0.50 1

R2, coefficient of determination; NSE, Nash–Sutcliffe efficiency; PBIAS, percent bias.

3. Results and Discussion

3.1. Parameter Sensitive Analysis

Although this study assessed the sensitivity of SWAT parameters at various flow gauging stations
and identified the parameters that can be used in the subsequent model calibration and validation
processes, only SA results of Kalihi sub-watershed at 16229000 and Heeia watershed at 16275000 are
shown and discussed under the use of rain gauge data. These stations were purposely selected as both
represent similar upstream fraction of the watersheds and show similarity in terms of topographic and
land use features that facilitate easy comparison of the model results.

Globally, the SA showed that CN2, CH_K2, ALPHA_BF, ESCO, SOL_K, CH_N2, OV_N,
SOL_AWC, and EPCO (see Table 3 for parameter descriptions) were the most sensitive parameters for
the watersheds, as they showed larger absolute values of t-statistics and their p-values are significant
(p < 0.05) at 5% level of significance [82]. Table 3 also provides the calibrated values of sensitive
and considered parameters for both the Kalihi and Heeia watersheds under both rain gauge and
UH250m data. It can be clearly noted that the use of rain gauge and UH250m data can potentially
provide different parameter values, indicating the importance of rainfall data in SWAT parameter
value estimation.
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Table 3. Sensitivity rank of SWAT parameters and their corresponding calibrated values for Heeia and Kalihi watersheds.

Parameter Description Kalihi (6229000) Haiku (16275000)

Initial-Value Unit Rank t-stat p-Value Fitted-RG Fitted-GRD Rank t-stat p-Value Fitted-RG Fitted-GRD

CN2 Curve number at moisture condition II a 55–91 1 −28.12 0.000 −46.50% −29.90% 1 −53.57 0.000 −47.93% −49.37%
CH_K2 Effective hydraulic conductivity in main channel 0.000 mmh−1 2 14.50 0.000 103.500 182.500 2 30.38 0.000 201.720 246.600

ALPHA_BF Baseflow alpha factor 0.048 day−1 3 −4.59 0.000 0.090 0.005 3 −18.18 0.000 0.001 0.001
SOL_AWC Soil water available capacity b 0.1–0.18 4 3.98 0.000 −24.10% 20.50% 19 −0.14 0.891 12.12% 24.68%

EPCO Plant transpiration compensation factor 1.000 5 3.28 0.001 0.810 0.623 8 2.18 0.029 0.563 0.563
SOL_K Saturated soil hydraulic conductivity b 34.2–100.8 mmh−1 7 2.30 0.022 12.10% −33.70% 5 −4.24 0.000 −12.66% −8.00%

REVAPMN Minimum depth for groundwater revap occurrence 750.000 mm 8 −2.24 0.026 175.920 15.050 12 −1.45 0.147 430.250 415.75
OV_N Manning’s roughness coefficient for overland flow a 0.1–0.15 9 −1.98 0.049 −18.50% 10.90% 9 1.85 0.065 6.95% 5.00%
SOL_Z Soil depth b 100–1650 mm 10 1.88 0.060 11.70% −0.71% 16 0.50 0.615 3.23% 14.99%

GW_REVAP Groundwater revap coefficient 0.020 0.020 11 1.66 0.098 0.180 0.028 18 0.20 0.844 0.020 0.020
ESCO Soil evaporation compensation factor 0.950 14 −1.25 0.212 0.950 0.950 4 −5.54 0.000 0.314 0.321

CH_N2 Channel Manning’s roughness coefficient 0.014 15 0.93 0.354 0.014 0.014 6 3.97 0.000 0.035 0.035
GWQMN Minimum depth for groundwater flow occurrence 1000.000 mm 16 −0.79 0.428 1587.500 3687.500 11 1.50 0.134 2731.50 1945.500
CANMX Maximum canopy storage c 0.0–8.0 mm 19 −0.08 0.940 0.0–8.0 0.0–8.0 10 1.73 0.085 4.0–8.0 4.0–8.0

SLSUBBSN Average sub-basin slope length 9.0–92.0 m 20 −0.07 0.947 9.0–92.0 9.0–92.0 7 2.22 0.027 9.0–92.0 9.0–92.0
a varies with land use, soil, and slope; b varies with soil type; c varies with land use, but set to zero for urban land use; RG, Rain gauges data; GRD, Gridded rainfall data.
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Finally, the validities of selected parameters were checked by comparing the annual observed
and simulated streamflow, surface runoff, and subsurface flow components, with subsurface flow as
a combination of lateral and groundwater flow components. Baseflow filter program [83] was used
to split the total streamflow into surface runoff and subsurface flow. Subsurface flow components
and their corresponding percentages are reported in Table 4 for both Heeia and Kalihi. Best results
of SA showed comparable representation of observed flow components and their percentage values,
but systematically overestimated the subsurface flow components. This indicates that the sensitive
parameters ranked by the SUFI2 are influential and well identified to be utilized as important
parameters for further improvements of the representation of observed flow components and
percentage values through the subsequent calibration procedures. Calibrating SWAT model based on
the sensitive parameters significantly improved the representation of observed streamflow components
and corresponding percentage values of Heeia and Kalihi (Table 4).

Table 4. Observed and simulated annual average streamflow, surface runoff (SR), and subsurface flow
(SSF) (in mm) and percentages of SR and SSF relative to total streamflow for Heeia and Kalihi. Bold
signifies unsatisfactory.

Watershed Station Period Type Streamflow SR Subsurface Flow

Heeia 16275000 2002–2008

Observed 994 303 691
Sensitivity analysis (SA) 1622 333 1289
Calibration 1059 390 669

Percent (Observed) a NA 31 69
Percent (SA) NA 21 79
Percent (Calibration) NA 37 63

PBIAS (SA) 63.2 9.8 86.6
PBIAS (Calibration) 6.5 28.7 −3.2

Kalihi 16229000 2006–2010

Observed 680 302 378
Sensitivity analysis (SA) 990 260 730
Calibration 780 360 420

Percent (Observed) NA 44 56
Percent (SA) NA 26 74
Percent (Calibration) NA 46 54

PBIAS (SA) 45.5 −13.9 92.8
PBIAS (Calibration) 14.7 19.1 11.1

a Percent was calculated relative to the total annual streamflow values.

3.1.1. Heeia Watershed

The most sensitive parameter for the Heeia watershed is the CN2, followed by the CH_K2 and
the ALPHA_BF, respectively (Table 3). The parameter CN2 has a primary influence on the amount of
surface runoff generated from each HRUs, and hence a high sensitivity of CN2 is expected. The model
also showed high sensitivity to the parameter ALPHA_BF that could affect the recession curve of
the streamflow hydrograph. This could be partly due to the presence of dikes in the shallow aquifer
of the mountainous area [84] that can cause slow groundwater discharge to stream, quick recession
curve, and steep streamflow hydrograph where ALPHA_BF plays substantial role. This is a unique
characteristic of Hawaiian watersheds when compared to large continental watersheds. The SOL_K
that controls the lateral flow contribution to streamflow is also a sensitive parameter. This could be
expected because the upstream part of the watershed is dominated by forested land use and highly
permeable volcanic soils. Such characterizations may cause high lateral flow due to high hydraulic
conductivity (SOL_K) of volcanic soils with steep slope that play a significant role in lateral flow
estimation. The Heeia watershed showed low sensitivity to the SOL_AWC, which is probably due to
the dominance of rock outcrop soil in the upstream part of the watershed (see Figure 2c). Considering
the coarse nature and low water holding capacity of rock outcrop soil [14], the SOL_AWC parameter
may not play a substantial role for the watershed.
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3.1.2. Kalihi Sub-Watershed

The top three most sensitive parameters of the Kalihi sub-watershed are the same as of the
Heeia watershed. However, the parameters average sub-basin slope length (SLSUBBSN) and channel
Manning’s roughness coefficient (CH_N2) seemed not to be important for this sub-watershed (Table 3).
The lower sensitivity of these parameters for the Kalihi sub-watershed, when compared to the Heeia
watershed, most likely indicates a larger surface roughness (rock outcrops) and steeper nature of the
Heeia watershed. In contrast, the Kalihi sub-watershed showed higher sensitivity to the parameter
SOL_AWC compared to the Heeia watershed (Table 3), most likely due to the dominance of silty clay
soil (see Figure 2c).

3.2. Daily Streamflow Simulation Using Rain Gauge Data

Based on available observed streamflow data, the SWAT model was calibrated and validated at
various flow gauging stations for different periods. The respective goodness-of-fit statistical values
are summarized in Table 5. For clarity purposes, results for only one year at selected stations
are shown (Figures 3–6). The results show the streamflow hydrographs and the corresponding
prediction uncertainty. Scatter plots of all stations that cover both the calibration and validation
periods (1985–2014) are shown in Figure 7.
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Table 5. Goodness-of-fit statistics for daily streamflow simulations at Heeia and Nuuanu area watersheds using rain gauge data. Bold signifies unsatisfactory.

Watershed Station No. Period Time Span Behavioral No. p-factor r-factor NSE R2 PBIAS (%)
Assigned Weight Overall

NSE R2 PBIAS Average Ratings

Heeia

16275000
Uncalibration 2002–2008 NA NA NA −6.87 0.55 98.4 1.0 1.0 1.0 1.0 Unsatisfactory

Calibration 2002–2008 78 0.57 0.63 0.39 0.48 6.5 1.0 1.0 4.0 2.0 Satisfactory
Validation 2009–2013 0 0.40 1.11 −2.00 0.29 20.3 1.0 1.0 1.0 1.0 Unsatisfactory

NA
Uncalibration 2002–2008 NA NA NA −1.45 0.62 30.83 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 2002–2008 420 0.79 0.67 0.66 0.66 −11.5 2.0 2.0 3.0 2.3 Satisfactory
Validation 2009–2013 221 0.82 0.47 0.53 0.56 −1.6 2.0 1.0 4.0 2.3 Satisfactory

Kalihi 16229000
Uncalibration 2006–2010 NA NA NA −0.07 0.86 77.09 1.0 4.0 1.0 2.0 Satisfactory

Calibration 2006–2010 299 0.83 0.84 0.86 0.86 14.66 4.0 4.0 2.0 3.3 Good
Validation 2011–2014 344 0.93 0.72 0.88 0.88 1.10 4.0 4.0 4.0 4.0 Very good

Nuuanu 16232000
Uncalibration 1990–1995 NA NA NA −2.55 0.74 221.93 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 1990–1995 303 0.93 0.78 0.72 0.76 8.80 3.0 3.0 3.0 3.0 Good
Validation 1985–1989 360 0.90 0.46 0.58 0.59 11.30 2.0 1.0 2.0 1.7 Satisfactory

Makiki 16238000
Uncalibration 2010–2012 NA NA NA −3.14 0.70 30.11 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 2010–2012 32a 0.91 0.49 0.65 0.76 −4.70 2.0 3.0 4.0 3.0 Good
Validation 2013–2014 3a 0.94 1.99 0.57 0.66 −8.40 2.0 2.0 3.0 2.3 Satisfactory

Manoa-Palolo

16240500
Uncalibration 2006–2010 NA NA NA −1.38 0.77 68.42 1.0 3.0 1.0 1.7 Satisfactory

Calibration 2006–2010 102 0.85 0.89 0.71 0.72 −1.30 3.0 2.0 4.0 3.0 Good
Validation 2011–2014 21 0.95 0.81 0.79 0.81 −1.40 3.0 3.0 4.0 3.3 Good

16242500
Uncalibration 2006–2010 NA NA NA −1.61 0.76 130.80 1.0 3.0 1.0 1.7 Satisfactory

Calibration 2006–2010 417 0.94 0.91 0.71 0.72 −3.20 3.0 2.0 4.0 3.0 Good
Validation 2011–2014 418 0.97 0.91 0.75 0.77 −21.70 3.0 3.0 1.0 2.3 Satisfactory

16244000
Uncalibration 2010–2012 NA NA NA −1.83 0.73 286.09 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 2010–2012 8 a 0.93 1.17 0.63 0.64 15.80 2.0 2.0 1.0 1.7 Satisfactory
Validation 2013–2014 343 0.71 0.77 0.83 0.81 18.20 4.0 3.0 1.0 2.7 Good

a There are more than 200 behavioral solutions if NSE is set to ≥0.2 (similar to Heeia watershed). Behavioral solutions of Nuuanu area watershed were calculated at NSE ≥ 0.5. p-factor,
percent of observations bracketed at 95% confidence interval (95PCI); r-factor, average width of 95PCI; NSE, Nash–Sutcliffe efficiency; R2, coefficient of determination; PBIAS, percent bias;
NA = Not Available.
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3.2.1. Heeia Watershed

Generally, the graphical comparison of observed and simulated daily streamflow values of Heeia
at 16275000 station showed that SWAT tracks the trend and temporal variability of observed streamflow
hydrograph (Figure 3b,d). This is further confirmed with similar R2 values, which is insensitive to
differences in magnitude between observed and simulated values [78], for both initial (uncalibrated)
and calibrated SWAT results (Table 5). Initial streamflow results indicate that the observed peak flows
are systematically overestimated by the model with high negative NSE and positive PBIAS values.
Calibrating the model significantly improved these values, as well as observed streamflow hydrographs
representation (Table 5 and Figure 3). However, the model still tends to underestimate some peak
flow values during the calibration period, e.g., in 2006. At the same time, the model generated several
peak flow events that were not consistent with the respective measured low flow values (Figure 3).
In addition, while the low flows of 2002–2004 were systematically underestimated, the low values
are well-represented for the period 2005–2008, e.g., in 2006 (Figure 3b). Further calibration indicated
that some of the underestimated low and peak flows in certain periods cannot be adjusted without
further overestimating the flows of 2005–2008. Therefore, additional calibration with lack of rainfall
data would not provide improved results. On the other hand, streamflow values at the wetland station
of Heeia were captured by the model, but this should be cautiously interpreted as the flow calibration
data were generated from the recorded streamflow data of the USGS at 16275000. A scaling factor of
approximately three times of the data recorded at 16275000 was used, but Leta et al. [14] noted that
the scaling factor is highly biased. With negligible land-use changes during the study period, it is
clear that the lack of rainfall data within the watershed is the cause of the model inaccuracies for the
Heeia watershed.

Water 2018, 10, x FOR PEER REVIEW  7 of 30 

Water 2018, 10, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/water 

3.2.1. Heeia Watershed 

Generally, the graphical comparison of observed and simulated daily streamflow values of 
Heeia at 16275000 station showed that SWAT tracks the trend and temporal variability of observed 
streamflow hydrograph (Figure 3b,d). This is further confirmed with similar R2 values, which is 
insensitive to differences in magnitude between observed and simulated values [78], for both initial 
(uncalibrated) and calibrated SWAT results (Table 5). Initial streamflow results indicate that the 
observed peak flows are systematically overestimated by the model with high negative NSE and 
positive PBIAS values. Calibrating the model significantly improved these values, as well as observed 
streamflow hydrographs representation (Table 5 and Figure 3). However, the model still tends to 
underestimate some peak flow values during the calibration period, e.g., in 2006. At the same time, 
the model generated several peak flow events that were not consistent with the respective measured 
low flow values (Figure 3). In addition, while the low flows of 2002–2004 were systematically 
underestimated, the low values are well-represented for the period 2005–2008, e.g., in 2006 (Figure 
3b). Further calibration indicated that some of the underestimated low and peak flows in certain 
periods cannot be adjusted without further overestimating the flows of 2005–2008. Therefore, 
additional calibration with lack of rainfall data would not provide improved results. On the other 
hand, streamflow values at the wetland station of Heeia were captured by the model, but this should 
be cautiously interpreted as the flow calibration data were generated from the recorded streamflow 
data of the USGS at 16275000. A scaling factor of approximately three times of the data recorded at 
16275000 was used, but Leta et al. [14] noted that the scaling factor is highly biased. With negligible 
land-use changes during the study period, it is clear that the lack of rainfall data within the watershed 
is the cause of the model inaccuracies for the Heeia watershed. 

 
Figure 3. (a) Daily gauge rainfall of 2006 and (b) the respective observed and simulated daily 
streamflows at USGS gauging #16275000 (calibration period); and (c) daily gauge rainfall of 2013 and 
(d) the respective simulated and observed daily streamflows (validation period) at Haiku. 
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For the same simulation period, SWAT well-represented both the observed low and peak flows of
the Kalihi sub-watershed at 16229000, where multiple observed rain records within the watershed were
used (Figure 4b,d). The model also captured the observed streamflow of the NAW sub-watersheds
at various stations (Figure 7e–j). These pieces of evidence suggest the significant influence of the
availability of rainfall data on reproducing observed daily streamflow.
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Additional insights into the effects of lack of rainfall data on streamflow simulation and model
performance were further discussed by Leta et al. [14]. For example, the observed peak flow event of
Heeia in March 2006, which was significantly underestimated, did not correspond to a peak rainfall
event recorded in the neighboring watershed that caused overestimation of observed peak flows.
In addition, it was noted that this period was well-captured by the model for the Kalihi sub-watershed
(Figure 4b). Thus, the use of rain gauges from the surrounding watersheds was not able to capture
the local micro-climate effect on rainfall values that caused the peak flow event of 2006 in Heeia
watershed. Moreover, the inconsistency of the rainfall data among the used rain gauges was also
reported by Leta et al. [14]. In contrast to the calibration period, the model overestimated some peak
flows of 2009, 2010, and 2013 during the validation period (see, e.g., Figure 3d for 2013). This was
particularly the case for the observed daily rainfall amount of approximately 200 mm day−1 and
above (Figure 3c). As a result, a maximum daily streamflow of 340 mm day−1 in 2013 was simulated
with a corresponding rainfall value of 540 mm day−1, while the corresponding observed streamflow
was 71 mm day−1 (Figure 3d). This situation caused a negative NSE value of 2 and thus lowered
model performance (Table 5), but the NSE was increased to 0.3 when this particular date was ignored
from the statistical metrics calculation. Interestingly, this period was adequately reproduced by the
model for the Kalihi sub-watershed (Figure 4d). Earlier studies also reported that there is a weak
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correlation between leeward and windward rain gauging stations [14], indicating less similarity in
rainfall values between leeward and windward stations. Consequently, the use of rainfall data from
the closest leeward stations particularly for the upstream of USGS #16275000, most likely resulted in
poor representation of the streamflow hydrograph and its temporal variability in the Heeia watershed
(Figure 3). The results also demonstrated a model’s lower accuracy for this watershed reflected with
lower NSE values and smaller percent of observations bracketed at 95PCI, p-factor (Table 5), and more
deviation of simulated flows from one-to-one line plot (Figure 7a–d).

3.2.2. NAW

The Kalihi’s streamflow hydrographs were better reproduced by the model (Figure 4).
For example, for the same simulation period of Heeia watershed, both the simulated peak and low flows
well-matched the observed flows at 16229000 station (Figure 4b,d). In addition, for another period, the
model showed good agreement with observation at various stations of NAW (Figure 7e–j). However,
the model showed the highest performance for the Kalihi compared to the other sub-watersheds of
NAW (Table 5). A possible explanation of such results can be attributed to the topographic settings
of Kalihi compared to the rest. For example, relatively more rugged and mountainous areas (slopes
≥ 70%) are prevalent in the upstream part of the other sub-watersheds of NAW. In such areas,
the available 10 m resolution DEM might be coarser and were not able to appropriately capture the
watersheds’ topographic variability, such as slopes, flow path lengths, and slope gradients. Coarser
DEM can generally result in smaller range of elevation values and decreased slopes than exist in reality,
which may cause more runoff contributing areas [85]. This in turn would negatively affect the accuracy
of SWAT in simulating streamflow and thus reduce its performance. Overall, the findings indicated
the paramount importance of rainfall data on watershed hydrological modeling and suggested the
need of multiple rain gauging stations within a watershed, even with a relatively small size watershed,
which is characterized by spatially heterogeneous rainfall pattern.

3.3. Daily Streamflow Simulation Using UH250m Data

Using the same SWAT parameters and range values of the rain gauge data, SWAT was run
with the 250 m resolution rainfall data for both the Heeia watershed and NAW. The goodness-of-fit
statistics under these data are listed in Table 6, while one-year streamflow hydrographs are shown
in Figures 5 and 6. Similarly, scatter plots for both the calibration and validation periods at several
stations are presented in Figure 7.

3.3.1. Heeia Watershed

Similar to the rain gauge data, some observed peak flows of Heeia at 16275000 station were missed
by the model when the UH250m data were also used (Figure 5). An interesting observation from the
figure is the recorded peak flow data of March 2006, which was missed under the use of rain gauge
data, and still underestimated when the UH250m data were used. This indicates that the spatially
interpolated rainfall data were not able to capture some of the local micro-climate effects and thus still
reflects the importance of using recorded rainfall values in the watershed. However, the low flows
were generally well simulated under the UH250m data for both the calibration and validation periods.
In addition, a better representation of some observed peak flows during the validation period were
achieved, which were noticeably overestimated under the use of rain gauge data from the neighboring
watersheds (Figures 5 and 7).
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3.3.2. NAW

Contrary to the Heeia watershed, the observed low flows of NAW were systematically
underestimated at some flow gauging stations under the use of UH250m data, while the peak flows
were well-captured (Figure 6). This is also clearly seen in Figure 7. Further, percent bias values
of 30% and above were obtained, whereas the rain gauge data provided less than 15% (Tables 5
and 6). In general, findings indicate that the performance of gridded rainfall data is watershed specific,
which could be related to the complexity of rainfall formations and patterns over the islands. Due to
such complexities, the spatially interpolated rainfall data might not be able to capture the spatial
variability in some areas where the rainfall spatial pattern is significantly different. Thus, the use of
UH250m data for the NAW is inconclusive, suggesting the significance of well-distributed rain gauge
data over the gridded values. However, overall, satisfactory results were obtained under the use of
UH250m rainfall data (Table 6).
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Table 6. Goodness-of-fit statistics for daily streamflow simulations at Heeia and Nuuanu area watersheds using UH250m rainfall data. Bold signifies unsatisfactory.

Watershed Station No. Period Time Span Behavioral No. p-factor r-factor NSE R2 PBIAS (%)
Assigned Weight Overall

NSE R2 PBIAS Average Ratings

Heeia

Uncalibration 2002–2008 NA NA NA −3.96 0.66 56.8 1.0 2.0 1.0 1.3 Unsatisfactory
16275000 Calibration 2002–2008 437 0.73 0.59 0.50 0.53 15.8 1.0 1.0 3.0 1.7 Satisfactory

Validation 2009–2013 226 0.68 0.61 0.38 0.40 −22.4 1.0 1.0 2.0 1.3 Unsatisfactory

Uncalibration 2002–2008 NA NA NA −2.01 0.64 27.4 1.0 2.0 1.0 1.3 Unsatisfactory
NA Calibration 2002–2008 405 0.89 0.71 0.60 0.61 −5.2 2.0 2.0 4.0 2.7 Good

Validation 2009–2013 333 0.94 0.64 0.62 0.62 −5.5 2.0 2.0 4.0 2.7 Good

Kalihi 16229000
Uncalibration 2006–2010 NA NA NA −1.34 0.84 134.2 1.0 3.0 1.0 1.7 Satisfactory

Calibration 2006–2010 99 0.46 0.89 0.80 0.82 13.7 3.0 3.0 3.0 3.0 Good
Validation 2011–2014 112 0.57 0.84 0.78 0.83 −53.6 3.0 3.0 1.0 2.3 Satisfactory

Nuuanu 16232000
Uncalibration 1992–1995 NA NA NA −0.32 0.67 118.6 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 1992–1995 430 0.78 0.54 0.74 0.75 2.1 3.0 2.0 4.0 3.0 Good
Validation NA NA NA NA NA NA NA NA NA NA NA NA

Makiki 16238000
Uncalibration 2010–2012 NA NA NA −4.47 0.73 183.1 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 2010–2012 3a 0.70 0.26 0.62 0.67 −36.0 2.0 2.0 1.0 1.7 Satisfactory
Validation 2013–2014 0a 0.55 2.17 0.24 0.44 −72.4 1.0 1.0 1.0 1.0 Unsatisfactory

Manoa-Palolo

16240500
Uncalibration 2006–2010 NA NA NA −1.18 0.81 49.1 1.0 3.0 1.0 1.7 Satisfactory

Calibration 2006–2010 108 0.82 0.83 0.69 0.72 6.9 2.0 2.0 4.0 2.7 Good
Validation 2011–2014 55 0.87 0.88 0.68 0.74 7.4 2.0 2.0 4.0 2.7 Good

16242500
Uncalibration 2006–2010 NA NA NA −0.15 0.85 75.6 1.0 3.0 1.0 1.7 Satisfactory

Calibration 2006–2010 496 0.87 0.65 0.83 0.85 −11.0 4.0 3.0 3.0 3.3 Good
Validation 2011–2014 484 0.93 0.72 0.74 0.75 −18.9 3.0 2.0 2.0 2.3 Satisfactory

16244000
Uncalibration 2010–2012 NA NA NA −4.74 0.78 337.2 1.0 2.0 1.0 1.3 Unsatisfactory

Calibration 2010–2012 3 a 0.87 0.39 0.65 0.80 −30.0 2.0 3.0 1.0 2.0 Satisfactory
Validation 2013–2014 7 a 0.90 0.50 0.72 0.73 14.7 3.0 2.0 3.0 2.7 Good

a Behavioral solutions of Nuuanu area watershed were calculated at NSE ≥ 0.5 and could be more if set to 0.2 (similar to Heeia watershed). p-factor, percent of observations bracketed at
95% confidence interval (95PCI); r-factor, average width of 95PCI; NSE, Nash–Sutcliffe efficiency; R2, coefficient of determination; PBIAS, percent bias; NA = Not Available.
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3.4. SWAT Performance Comparison

The model generally provided “unsatisfactory to satisfactory” results for the Heeia watershed
for both rain gauge and UH250m data (Tables 5 and 6). A negative NSE value was obtained during
the validation period of the Heeia watershed under the rain gauge data, but this was significantly
improved for the UH250m data yielding NSE of 0.38. Moreover, while the UH250m data produced
NSE ≥ 0.2 (threshold value) for more than 225 of the 500 parameter sets, the rain gauge data did not
provide even a single positive NSE value during validation period at 16275000 station (Tables 5 and 6).
This indicates that, in the absence of rain gauge data within a watershed, the UH250m data can be used
as a remedy for rainfall data scarcity. This is very important, especially for remote and inaccessible
mountainous areas. An overall “satisfactory to very good” performance rating was obtained for
the NAW, but a lower performance is noticed under the UH250m data compared to the rain gauge
data (Tables 5 and 6), emphasizing the superiority of rain gauge data over gridded values for highly
heterogeneous watersheds, such as in Hawaii.

Further analysis on both low and high flow values (calibration period) showed that the low
flow and high flow NSE values for the Heeia watershed were −0.53 and 0.77 (using rain gauge
data), respectively. However, these values were 0.26 and 0.65 under the use of UH250m data,
respectively, indicating significant improvement on the simulated low flows of the Heeia watershed
(Figures 7 and 8). In addition, while 68–73% of observations were bracketed within the 95PCI with
narrow uncertainty band for the UH250m data (Table 6), the use of rain gauge data from the
neighboring stations only covered up to 57% of streamflow observations even with a wider band of
the 95PCI (Table 5). Nevertheless, some peak flow values are still underestimated under the UH250m
data, which is most likely due to the averaging and smoothing effect of spatial interpolation on rainfall
amount. Compared to Heeia, more observations were bracketed at 95PCI (p-factor > 0.7) for the Kalihi
and other sub-watersheds of the NAW at all flow stations, but a few stations showed lower p-factor
and larger r-factor values under the use of UH250m data (Tables 5 and 6). In addition, the use of
UH250m resulted in high percent bias (PBIAS) for a few stations when compared to the rain gauge data.
This most probably indicates that the spatially interpolated rainfall values were not able to well-capture
the local spatial variability and patterns of rainfall at some specific areas. Overall, although the use
of rain gauge data inside the watershed clearly indicated better results (Figure 7), the UH250m data
can be used as a surrogate in the absence of such data, especially for watersheds such as Heeia and in
remotely inaccessible parts. This may be more acceptable in cases that do not require high accuracy
data, such as monthly and yearly streamflow estimations.
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Finally, it is important to note that the lack of rainfall data not only affected streamflow hydrograph
simulation and model performance (e.g., NSE value), but also introduced uncertainties in estimating
model parameter values and identifying their optimal ranges. Although the same range of parameter
values were used, the results identified considerably different parameter values when rain gauge and
UH250m data were used for model calibration and validation (Table 3).

4. Summary and Conclusions

Using existing geospatial and hydro-climate data, SWAT models were developed for the Heeia
watershed and the NAW, two watersheds with contrasting rain gauge data. This study mainly
examined the effect of using nearby rain gauges and gridded rainfall data on daily streamflow
simulation and model performance for watersheds under scarcity of measured rainfall data. This was
tested for the Heeia watershed by utilizing rain gauge data from the surrounding watersheds and the
spatially interpolated 250 m resolution rainfall data as a remedy in the absence of rainfall observations
within the watershed. Following parameters sensitivity analysis, SWAT was calibrated and validated
with respect to the observed daily streamflow data operated by the USGS at multiple gauging stations.

During SA, the SWAT estimated percent contributions of surface runoff and subsurface flow
to total streamflow are in similar order of magnitudes with observation percentages. This gave us
confidence to select the sensitive parameters screened by SUFI2. The parameters CN2, CH_K2,
and ALPHA_BF were identified as the three most sensitive ones for the Oahu’s watersheds.
By calibrating those sensitive and other important parameters, SWAT reproduced acceptable temporal
trend and variability of observed daily streamflow hydrographs. However, while the simulated
daily streamflow hydrographs temporal variability generally matched the observed daily streamflow
hydrographs of the Heeia watershed, the model provided unsatisfactory results during validation
period when rain gauge data from the neighboring watersheds were used. In addition, the observed
low flows were systematically overestimated for some periods under the use of the surrounding
rain gauges data. On the other hand, the use of the UH250m data provided better representation
of streamflow hydrographs for those periods, especially on the low flows, and thus significantly
improved model performance for the ungauged Heeia watershed. Findings indicate the overall
outperformance of the UH250m over the use of rain gauge data from the surrounding watersheds for
ungauged watersheds. Therefore, the UH250m data can be used as an alternative over the use of rain
gauge data from outside for ungauged watersheds. Such a conclusion is significant considering the
small size (11.5 km2) of the Heeia watershed. In addition, the use of such data facilitates analyses of
watersheds in areas where rain gauges are lacking, e.g., in mountainous regions.

In the case of NAW, while more observations were generally bracketed at 95PCI (p-factor > 0.7)
with narrow uncertainty band (r-factor ≤ 1.0) and NSE ≥ 0.5 for both rain gauge and UH250m data,
findings indicated that the model performance was unexpectedly lowered when the model forced
with the UH250m data. This was only seen for flow gauging stations of Makiki and Kalihi (validation
period), where the observed flows at some stations were not well-represented under the use of such
data. The latter indicates the outperformance of well-distributed rain gauge data over gridded rainfall
products. Hence, the use of UH250m data is site specific, which could be due to area specific and
high complexity of rainfall formation in Hawaii, including interpolation estimation errors. Overall,
the study generally confirmed the superiority and usefulness of distributed rain gauge data over
gridded rainfall data, but the latter high-resolution data can still be used as a remedy for watersheds
without rain records in the Hawaiian Watersheds. In general, satisfactory results are obtained with the
use of UH250m data for the generally representative of volcanic sites with similar rainfall patterns in
Pacific islands. It is thus believed that this study’s methodology can be applicable for other ungauged
watersheds in such regions, where hydro-climate data scarcity commonly prevails.

Finally, SWAT showed an overall lower performance for the Heeia watershed when compared
to the NAW, which is most likely due to lack of rain gauge data inside the watershed. Based on
the NAW results, having rain gauges within the watershed is expected to improve modeling results.
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Therefore, installing at least two rain gauges within Heeia and validating the model performance with
the UH250m data results is highly recommended in future work. Given the rainfall pattern gradient,
rain gauge locations should preferably be distributed to capture the upstream, mountainous part and
the downstream part of the watershed. In addition, considering the small size of Heeia watershed
and its significant topographic variability, the used 10 m DEM data might be too coarse to capture the
hydrologic processes that can occur at finer-scale. Therefore, utilizing finer-resolution elevation data,
such as Light Detection and Ranging (LiDAR), in future studies is recommended.
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